ORC 67-16
APRIL 1967

- 4
S
i
o
L) LIKELIHOOD RATIO TESTS FOR
O RESTRICTED FAMILIES
by
Richard E. Barlow

OPERATIONS RESEARCH CENTER -
COLLEGE OF ENGINEERING :
DDC
cap TrnELT ¥O. 1 ' n |\’Eﬂﬂﬁﬁ
£ | et 18 Unlimited 1 JUN 16 1967‘5
A S0 YR .3 v . U u_
’” ARGHIVE COPY s
UNIVERSITY OF CALIFORNIA-BERKELEY 0
e

T PR % ol




LIKEL IHOOD RATIO TESTS FOR RESTRICTED FAMILIES
by
Richard E. Barlow

Operations Research Center
University of California, Berkeley

April 1967 ORC 67-16

This research has been partially supported by the Office of Naval Research
Contract Nonr-3656(18) with the University of California. Reproduction in whole or
in part is permitted for any purpose of the United States Government.

R . mp e b8 kT o e




ACKNOWLEDGMENT

We would like to gratefully acknowledge the help
and advice of Gordon Crawford, Albert W. Marshall
and David W. Walkup. Leonard Jacobson machine
computed the percentage points in Tables | and 2
and performed the robustness study.




ABSTRACT

Likelihood ratio tests for the problem: Ho: F ccﬁ‘ versus

H,: F e&#- & are defined for certain nonparametric families

1’ 1
of distributions & and 5; . In particular the 1ikelihood

ratio test is defined and shown to be unbiased when J;

denotes the exponential distributions (possibly truncated)
and <& denotes the distributions with increasing failure
rate. Comparisons are made with competing tests. The problem
of testing for increasing failure rate average is also
examined.



LIKEL IHOOD RATIO TESTS FOR RESTRICTED FAMILIES

1. Introduction

Tests for composite hypotheses having optimal properties for finite samples
have been obtained for various special problems by an important principle due to
Neyman and Pearson (1928, 1933) called the likelihood ratio principle. This principle
leads to the likelihood ratio test. Asymptotic properties of this tzst for
parametric families of distributions can be found in Wilks (1962). Recently
a conditional likelihood ratio test has been proposed for testing for trend in a
stochastic process of Poisson type [Boswell (1966)]. This is a departure from
the standard literature in that the underlying family of distributions considered
is essentially nonparametric. The main result obtained is the asymptotic distribution
of the likelihood ratio under the null hypothesis of no trend.

We consider likelihood ratio tests for certain geometrically restricted

families of distributions. For example, let

a = : F| F(0O) = 0 and -10g [l'F!5)j nondecreasing in x > 0

Then N is known as the IFRA (for increasing failure rate average) family of
distributions. These distributions play an important role in the mathematical
theory of reliability [Birnbaum, Esary, and Marshall (1966)]. However, not only
is the family nonparametric but there is no sigma-finite measure relative to which
all F e 65' are absolutely continuous. Hence, the usual councept of maximum
likelihood estimate does not suffice. Kiefer and Wolfowitz (1956, p. 893) propose
a generalization of the maximum likelihood estimate concept which we adopt. Let

F., F. e and let f(-: F

1 Fy Fz) denote

] ’

T




the Radon-Nikodym derivative of F' with respect to the measure induced by F, + F

1

Definition |

E is called the maximum likelihood estimate relative to <& if F satisfies

n f(Xi; F, F)
soe M T—Fos 70| =1

FeFi=1

where X = (X], Xps wees Xn) is a random sample from some F ¢ .

This definition is easily seen to coincide with the usual definition wher the
family & is dominated by a sigma-finite measure.

Now consider the problem of testing Ho: F edib against the alternative
Hy: F e - where F  CF. Let F_ (F) denote the maximum 1ikel ihood

estimate relative to é?o €%) in the sense of definition 1. We define the

1ikelihood ratio sttistic /\nQ(_) based on a random sample X as follows:

Definition 2

An(l) is called the likelihood ratio statistic where

We will be concerned with the properties of An(ﬁ) for various restricted

families of distributions c‘v“'o c & .

2. |IFRA Distributions

Let & = {F | F(0) = 0 and Al rl'”")] Tin x>0} and X = (X}, X,,

500 [ Xn) denotes a random sample from F . We claim that the maximum 1ikel ihood

2

A i
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estimate (MLE) F0 relative to 0'70 puts mass at each of the sample observations.

o ¥ - .
To see this suppose &* = {F', FZ} where the F. probability of the observation

1

)(i is F]{Xi}>0 for i=1,2, ..., n and FZ{Xk}=0 for some k (1 <k <n) .

From definition 1 it follows that Fl is ME in& . Since F e&o can put

mass at a countable number of points we may restrict attention to those F eé’%
putting mass at sample points; i.e., F absolutely continuous with respect to
A+ u where )\ is Lebesque measure and u{A}] equals the number of sample

points in A . The likelihood becomes

L (x| F)=

N 93

F {Xi} ;

i=1

Proschan and Marshall (1967) have obtained the MLE under the IFRA

assumption. From the definition of IFRA distributiorswe see that

W93

(2.1) L |F) ="

[exp(- )‘i-lxi) - exp(- xixi)]

1

where 0 < >‘o <A L0 £ A.n . We maximize likelihood subject to these restrictions

|

by letting )‘o = 0 and )‘n = +o . Letting A )\J. = ).J. - )\j-l where )‘o =0

and )‘n = +o , we see that (2.1) becomes

n

(2.2) L (X | F) = _

1 n
[exp(- 8, E XJ.) M - exp(- A \iXi)]] .

1 i+l

fl.'4 s

Maximizing (2.2) subject to A A, 20 (1 <i <n) we see that




n n
(2.3) Ak, = 1 logEX. -log T X,| >0
i i i+ -

are the maximum likelihood estimates of A li(l < i <n) . Substituting (2.3)

in (2.2) we see that the maximum likel ihood according to definition 1 becomes

n
ol
il _
~ n-l X, X, X.
(2.4) L (x| F) = 'El 1 - — ~
' T X, T X
D

If we let & denote the class of all distributions un the positive axis, then
F

is the usual empirical distribution function and the likelihood ratio statistic

for testing Ho versus Hl becomes
n
=
pral
[ n-l X, i r X,
(2.5) A(X) = n .E‘ 1 - - — .
' X T X,
i i

We consider the test, B , which rejects Ho when

A (X) < c

where ¢ is determined by
o

Pe (A(Y) ¢ }=a

W TS

iy gk e



and G(x) =1 - e for x >0 . This choice of a test based on the likelihood

ratio statistic is motivated by the following theorem.
Theorem 2.1

The test, # , based on the likelihood ratio statistic An(i) is unbiased

at all signiticance levels for the problem

Hy i Fed = {1FRA}
versus

HI F ecﬁ} = {DFRA} .
Proof:

Let G(x) =1 -e™ for x >0. It is sufficient to show that Foed,

(o]
implies
(2.6) Pe (A <x} 2P TA(X) <x] ‘
[o]
and Fl € éﬁ implies
(2.7) Pe (A(Y) <x} < PFI fa(x) <x}.

Let ¥(x) = 67'F_(x), ¥ = ¥ (X,) and note ﬂxl‘)- Tin x>0. Also Y, is

distributed as the i-th order statistic from G . Now

Wx.) o ov(x,)
X~ S~y for 2l
! J
implies
“ 9
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i t(X;) _

n = n 2 5

T X, y ¥(X.) TaYr
TR A L

L

Since h(x) = x (1 - x)* is increasing in x (0 <x <1), it follows that

n-1 n-=1
m h xi = m h 'ri
1_‘_ n a.!
i=1 - xj st i=1 E,” ,fj

where (Yl S RO Yn) is an independent ordered sample from G . (2.6)

2

follows immediately and th proof of (2.7) is similar. ||

We say that Fl < F2 (i.e., Fl is starshaped with respect to Fz) if

-1
Fa Fl(x)
- is nondecreasing for x >0 . From the proof of theorem 2.1 it follows

that Fl §F2 implies

Pe (0 s} P (n(®) <c ).

Hence the power of the likelihood ratio test is greater at F, than at Fl when

5F, . Percentage points for -log [\n(ﬁ) are given in Table 1.

2

0f course there are many unbiased tests of the IFRA hypothesis. Marshall,
Walkup and Wets (1966) have characterized the class of all such tests. These are

just the tests based on functions f(x‘ v Xogr eens m) having the properties:

1) f is homogenous;

J
2) 2 x. 6f(X]’ x2) LI Y xn) Z 0 for j = l, 2’ 5 Vol n"l
i=1 ! X . and all
: Xy > X, > e0e > X 0.
2% 2 2% 2

T




The test associated with f would reject Ho if

f(X], Xys wves xn) >c

where ¢ is some suitable critical number and Xl > X2 > ... >X are the
- - - 'n

usual order statistics labelled in reverse order.

3. |IFR Distributions

Let & = {F | F(0) =0 and - log (1 - F(x)] is convex for x >0} . This
is the class of IFR (for increasing failure rate) distributions. Proschan and
Pyke (1965) have proposed a t-<*- for constant versus increasing failure rate.
Their test is based on a statistic considered by M. G. Kendall (1938) and
H. B. Mann (1945) and is essentially a rank test for trend. Proschan and Pyke
show that their test is unbiased, has good large sample properties, and is competitive
in this sense with certain parametric tests when the unknown distribution lies
within some specified parametric family. However, sampling experiments indicate
that their test does not have good discriminating power for relatively small
samples. This is perhaps to be expected since their test does not use all of the
information in the sample.

M. Boswell (1966) studied a similar problem concerning Poisson type processes.
His statistic bésed on a conditional maximum 1ikelihood ratio test is essentially
the same as the likelihood ratio statistic studied in this section. The main
result in Boswell's paper is a derivation of the asymptotic distribution of his
test statistic. In contrast, we concentrate on small sample results.

Since IFR distributions can have a jump at the right hand end of their

interval of support it is clear from definition 1 that we need only consider




estimators absolutely continuous with respect to Lebesgue measure on [0, Xn)

with a jump at X (see Barlow and Proschan, (1965), p. 26). Hence

n-1
L (x | F) =[TT f(xi)] Fix )

i=1

where f is the density of F on [0, Xn) . Since

X

1 - F(x) = exp| - fr(u)du where r(u) = f(u)/T1 - F(u))]

(o]

for 0<u <Xn, we may write

x
S r(u)du
f(x) = r(x) e” © 0<x <Xn
X
fn r{u)du
and F{Xn} =e” © .

Hence
X.

n-1 n
(3.1) log an | F) = T 1log r(Xi) - ¥ f r(u)du
]

i=1 i=

The problem of maximizing (3.1) subject to r(x) nondecreasing was solved by
Grenander (1956) and independently by Marshall and Proschan (1965). They show
that the problem can be reduced to maximizing

1
(h - 8) (X, -X) rx,)

n-1 n-
T log r(X.,) -
. i g

i=1 i=1

subject to r(Xl) < r(Xz) < oo < r(Xn_l) . The maximum likelihood estimates are




Fn(xi) = min max [(;_u)—ﬁ(uﬂ- LD I + G-wl)—(xv-XV_J]

v_>_i+| u<i

for i =1,2, «eo, n =1, The maximum likelihood is

n-l
(3.2) L (x| P =[TT F"‘;’] S

i=1

The exponent on e can be easily verified using the definition of 7 and observing

that
X, X,
f i+
n n-1 /
if] / 2(u)du = izl (n - i) F(u)du .
0 Xi

Let JA'{FIF(O)'o' F(x) =1 -e™ for x <T and F(T) =1, 2 >0, T >0}

Then 07; denotes the class of exponential distributions with possible truncation
on the right. Consider now the problem of testing HO: F er3° versus

H,: F eJ—o’*‘; . The choice of Ho was determined by the fact that the MLE's

P
Fo and F are both absolutely continuous with respect to Lebesgue measure in

to, Xn) and place mass at Xn . The likelihood under Ho will be

n-1
L (X ' Fo) =[W )\e-)‘xi] e Mn

i=)

and the maximum likelihood will be

n-1
n=1 -n

(3.3) L (x| F)=
By

According to definition 2, the likeiihood ratio statistic for testing for

truncated exponentiality versus IFR and not truncated exponentiality will be
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n-1
(3.4) ) - S
(z X. TT F(X.)
) ! i=1 !
I ] < ] .0 < 1 so that
{n - ‘)(XZ- Xl) (n - 2)(X3- XZ) X=X
. = 1 i=1,2, ...,n-1,
LR (e - X7
then (3.4) becomes
n-1
* % v/ n-l n-1
YA T (0 D0 - )
) Xi
1

*
As in section 2 we consider the test, ¢ , which rejects Ho when
W (X) »
A, X)) = <,

where ca is determined by

Pe {hy () <c}=a.

The asymptotic distribution of A: (Y) car be found in Boswell (1966, p. 1572).

A table of percentage points obtained using Monte Carlo methods is contained in

Table 2.

L, Unbiasedness of the Likelihood Ratio Test for IFR

Like the Proschan-Pyke test, the likelihood ratio test has greater power
under the alternative than under the null hypothesis. To show this we need to

introduce some auxilliary results.




1

n i
Given a sequence of nonnegative real numbers {zi} , plot T zj versus
i=1 1
i and interpolate linearly between (0, 0), (1, z‘), eee (n, Zp + ot zn) .

20 2 ;n denote the slopes of the least concave majorant to this

127%

graph in successive intervals. This operation converts the original sequence into

Let z.

a nonincreasing sequence and will be useful later on. For convenience, call

;‘ > 22 > e Z—zn the Brunkized sequence after D. Brunk (see D. Brunk et. al.

(1955)). Note that z ZEZ > e > ;n can also be obtained by successive

1

averaging of the original sequence until it becomes nonincreasing.

We say that H(ZI’ z . zn) is a Schur function if

2’ . e

o SH
(z, -zJ.)(azi - azJ.> >0

for all vectors z and i, j=1,2, ..., n. This concept is needed in the

.

following useful lemma.

Lemma |

] ] ]
Let (z‘,  FU zn) and (z‘, P p— zn) denote two nonnegative

2’

sequences such that

r S
Zz. 22Xz, for r=1,2, oo, n =1
|

and
n n
Yz, =1z,
(R

Then the inequalities are preserved under Brunkization;



r - r =-r
i.e., L 2> 3 e (r=1,2, .c., n-1)
i=1 ' T =1 !
(i)
no__ n —
L z.= ¢ <

‘ ' *
1

.
)

If H is a Schur function then

(ii) H(;], -2-2’ 2 ;n) ZH(z", zl, i oy z;) .
Proof:

(i) is obvious since the least concave majorant to the {zi] sequence

1
lies above the least concave majorant to the {zi} sequence.

- - - -t n_ n -
Since (i) holds, 2022y 2000 2252, 2000272 and IZzi=:32i

we have (ii) by the Schur, Ostrowski theorem (see Ostrowski (1952)). //

Theorem 4.1

i f G'lF(x) is convex for x >0, 6(0) = F(0) = 0 and X (Y) denotes a

random sample from F(G) , then

Remark

*
This proves the likelihood ratio test /\n is unbiased since if F is |IFR

X

and G(x) =1 -e for x >0, then G-]F is convex on x >0,

Proof:

POs

¥ -1 Ve
Let Y. =6 F(X,) and note Y, =Y,
1 t 1 st it

12
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(n - i)(X; - X;)

Let 2z, = and
i n-1t

v (n - i)(Xi+|- xi)
|

l (n } i)(Y.':.‘_l- Y:;:)
zi ) n-1 2% BR
2 (n‘ i)(Yi"’l-Yi)
1

Since Y? = G'lF(Xi) and G-]F is convex

(n - X - X))

(n - i)(v?+‘- YY)

is increasing in i =1,2, ..., n. It follows from lemma 3.7 (i) of Barlow

and Proschan (1966) that

r ] n-
¥ z, T z,
l “~ l =]
r - n-l
% &, Yoz,
) ! !
r r . in =T
and hence ¥ z. >Tz, for r=1,2,...,n-1. Let {zi] and {zi] denote the
| 1

Brunkized estimates of [Zi] and {zi} respectively. Let

-H(xl, X

oo s xn_') = TT X.

n-1
2 1

I
and note that H is a Schur function. Since {zi] and {zi} satisfy the

hypotheses of lemma 1, it follows that
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_ _ T - -
-H(z‘, 2y ees Zn-l) :-H(z], Zys eees zn-l)'
Hence
] 1
(&.1) n-1 n-1 n-1 Z o TS n-1 n-1 5 *
T o(n - )X, - X)) TT #(x.) % (n-i)(Y.=,Y)) TT #(¥3)
\ i+1 i 1 i 1 i+] i ! i
Since
Iy - ot 0 L3
; (n - (Y- YD) % %
r -n
- i) -x)  TX
0 ]
for (1 =r<n -1) by lemma 3.7 (i') of Barlow and Proschan (1966) it follows that

-I s KR
T (n - i)(Y'i'”- Y'i‘)
1

n-1 n
(4.2) v (n - i)(xm-xi)
]
A &
X,
] ]

(4.1) and (4.2) together imply

n ot
TY,
|

AX) <A (Y)

The theorem follows from (Y], Y2, -

ota

;?(Yl’ Yor oo ¥y

Y)

) . //

Marshall,Walkup and Wets (1966) have characterized the class of unbiased

tests for constant failure rate versus nondecreasing failure rate.

based on functions h(xl, Xos sees xn)

These are

satisfying the conditions

AW
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i) h is homogeneous;

ah(xl, ST xn)
>0 j=1,2, «ee, n -1

J
H) i§| (Xi- xj”) "xi

for all Xp o Xy Teee >X > O . The corresponding test consists of rejecting

exponentiality if h(X‘, X2, 00 g Xn) < ¢ where ¢ is a suitable critical number

and X > X2 > eee > Xn are the order statistics labelled in reverse order.

§. Distribution of the Maximum Likelihood Ratio Statistic Under the Exponential

Assumpt.ion

From the computations in Boswell (1966) it is clear that the distribution of
A: » even under the null hypothesis, is exceedingly complicated. For this reason
we have had to use Monte Carlo methods to obtain the percentage points tabulated

in Table 2. However, the distribution of A: under Ho is quite smooth

as we shaw in

Theorem 5.1

ot

The likelihood ratio statistic A; has a nonincreasing density on (0, 1)

under the exponential assumption.

Proof:

Let 0 =W, <W <... < wn denote an ordered sample from the uniform

distribution on (0, 1) . Let

U. = W, - W, ix=k 15 25, sesesn 0 = 1.
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Then the random vector (U], ¢

0 s Lh_') has joint density

i=1,2, «ee, n -1

h(u,, U,y eee, u )=
17 72° * Tn-l
0 < u + u2 + ...+ un_] <1
0 otherwise.
Let (U], Uy» ooes Ln-') denote the modified vector (U‘, Ups oees Lk-l) after

Brunkization and subject to U 2 UZ > 0. 2 Un-l .

The likelihood ratio statistic

% _ 1
/\n(l) - n \n-l _ .
Y. 1T r(y.)
1! ) !
n-1
n-1 n-1
is distributed as (n - 1) .ﬁr . under the exponential assumption. Notationally

it will be convenient to replace n -1 by n . Hence we need only prove that
[ f l
Plﬂ'.

is concave in z ¢ (0, 1) . Let | denote the usual indicator set furction and

observe that

P;iﬁuif

= n'ffuwf I fG] vee Uns z]du‘ ceo dun
e

O<u,+..+u <l
=17 s

T
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Integrating out on u we have

upteeatu <l

where

f(u‘, vees UL 4S z) = j. I Tuye.ou, < z]dun
0<u <‘ -U e s o -U
-n— 1 n-1

=min 1 - Uy = eee = U un(z)]

and un(z) is the solution of z = uy «voou _yu
for fixed Ups Ugs eoes U g o
We claim that z is a strictly increasing convex function of u_ and,

n

therefore, that u, isastrictly increasing concave function of z . It follows

u ).

that f(ul, e UL z) is a concave function of 2z for fixed (u‘, Ups wes U

n=-

Hence

is a concave function of 2z .

To show z = ul o un 1 un is a convex function of un , define

(GT' ceey G ) to be the Brunk modification of (s uy ooy u ) subject

n-1

-1

to u, e G; >l > G; - Clearly z is piecewise convex for u in the
I IR S BN TS P

intervals [0, 4. , U,
n-1 1

o5 7 r_:: =h .
ne2 ' Yn.ar Ynozl: '

therefore sufficient to show that 2z has a continuous derivative in un . We show

that the right and left hand derivatives at u = G;-l are equal. For u, <UL




o KA U. +-.o+u n"j-l
d_z— = U“ LA lT.‘ ( L+l . n-])

For uoy < v < Up .2
dz = G-‘." Gl (u +‘+-. "‘Un) f'l-_j-l
dun 1 J n-j

For G =4 ., , obviously

uj+l+”'+un-l ) uj“t..*'un_l*un
n-1-j n-j

For n=2 and n=3 it is a straightforward computation to obtain the

distribution of A;(l) . Clearly, for n =2

M) = U,
and the likelihood ratio is uniformly distributed on (0, 1) .
For n=3
L U‘ l& if U 2 L&
(¥) =47, T =
s 1 (u]+U2)2 if U<y .
Hence
Rl <o = Sf2 aav ff 2 au
G|"3 u 12 12
U]UZSE; gul+u25ﬁ:
u‘z u2 ulf u2
and

. 2
o ag(0) < uf = F et [109 (L;?@)]+ (| = -u)

e Sy



The density is

93(u) =5+ 3 logl-l'::‘l:g]

-

It is easy to check that g is decreasing, 93(0) =+ o, 93(1) =% and
1 ]
93(0) = 93(1) = .« . It is tempting to conjecture that this behavior is true

] ]
in general, i.e., gn(O) = + o, gn(O) = gn(l) =-« for n>3.

19
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+
TABLE |

Percentage Points
for -log An(l)

Sample Size Percentiles
n .01 .05 .90 .99
2 0.015 0.072 3.3 4.85
3 0.216 0.480 5.25 7.25
b 0.6 1.1 6.9 9.0
5 1.2 1.8 8.6 10.8
6 1.7 2.5 10.1 12.6
7 2.4 3-8 11.7 14.3
8 3.0 L.2 132 15.8
9 3.7 5.0 14.7 17.6
10 L.6 5.8 16.1 19.2

K . . 5N
Note that we use lower percentiles for testing exponentiality
versus IFRA and upper percentiles for testing IFRA versus DFRA.




TABLE 2

Percentage Points for the IFR

Likelihood Ratio Statistic A:(i)

Sample Size

Percentiles

Number of Random

n .05 .01 Simulations Used
2 . 0500 .0100 50,000
3 . 025 .00L 50,000
L .0162 .0027 40,000
5 .0125 .0017 50,000
6 .0 .0015 60,000
7 . 0087 .001 60,000
8 .0077 .001 80,000
9 . 0065 .0007 70,000
10 . 0055 .0007 50,000

20a
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6. Comparisons with Competing Tests

In a paper in process (Barlow and Jacobson) we study in some detail the
robustness of the IFRA and IFR likelihood ratio tests relative to selected competing
tests. Preliminary investigations indicate that the IFR likelihood ratio test is
much better than the Proschan-Pyke test for small samples. However, they have
achieved a remarkable amount of information concerning the asymptotic behavior of
their test statistic. In particular they show that their test statistic., suitably
normalized, has an asymptotic normal! distribution for a wide class of alternative

distributions. On the other hand, the distribution of the IFR likelihood ratio

statistic, under the null hypothesis, converges to a weighted sum of x2 distributions

which is rather cumbersome to compute. For small sample sizes (say n < 10) both
statistics are relatively easy to compute with the aid of a desk calculator.

Figure 1 is a graph of the power functions for both tests against Weibull
)0

= \x .
distribution alternatives (i.e., F(x) =1 -e ( for X >0 where o is

the shape parameter) when the sample size is 10 and the significance level is
5%. These curves were obtained by means of Monte Carlo simulation on a computer.
The power of the Proschan-Pyke test increases very slowly as a function of the
Weibull shape parameter, ¢ . Even when the shape parameter o = 3 , the power is
only .62. Our numerical investigaions indicate that for ~» >3 the power increases
even more slowly and that for o = 500 , the power is only .86. For n = 20 ,
the power of the Proschan-Pyke test is much better; it vields a power of .92 for
o= 3 . It should be noted, however, that the power of this test is still not as
good as the power of the likelihood ratio test when n = 10 .
The asymptotic relative efficiency of the Proschan-Pyke test relative to tne
Weibull likelihood ratio test when the true distribution is of the form G(x) =
-(x)?

l -e (0 > 1) for x >0 was computed to be .59 (see Proschan-Pyke (1965)).

The asymptotic relative efficiency of their test relative to the gamma likelihood
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ratio test when the true distribution is the gamma is only .20. Unfortunately,

asymptotic evaluation of the IFR likelihood ratio test seems to be extremely difficult.
There are many additional unbiased tests of exponentiality versus IFRA or

IFR which should perhaps be considered. Recall that all of the associated

statistics are necessarily homogeneous. A statistic related to the IFR 1ikelihood

ratio statistic is

If there are no reversals of the normalized differences (they should decrease under

IFR alternatives) then A; and A;. agree except for the factor n X‘ and a

constant. |If G F is convex, then

A(x) : v

taltl

The test which rejects exponentiality when A;“ (5) is sufficiently large is related
to a test derived by Moran (1951) for a problem concerning renewal processes. Under

the assumption of exponentiality

-2 log An (Z)

1 + n+l

&n

W=

is asymptotically distributed as a xz variable with n - 1 degrees of freedom.
Epstein's (1960) test 8 uses this statistic. Monte Carlo experiments by Zelen
(1961) indicate that the power of this test is less than that of the Proschan-Pyke
test for small samples against Weibull distribution alternatives.

In section 2 we proved that F <G implies
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LX) = oA (Y)
st
Hence we could consider the test, qu , which rejects exponentiality in favor of
the IFRA hypothesis when An(ﬁ) >c,_, Wwhere

P |An(i) _‘:c]_w" =1 - P, :/\n(i) fcl_(y‘l = o

For this test we would use the upper percentile points of -log An({) given in
Table 1. Since An(ﬁ) is essentially the maximum likelihood under the IFRA
assumption it is perhaps not too surprising that it seems superior to the IFR
likelihood ratio test (see Fig. 1). On the basis of computer calculations we
conjecture that -log ﬁh(!), suitably normalized, is asymptotically N(O, 1)
Perhaps a better test than all ol those considered so far is a uniform

conditional test [see Cox and Lewis (1966) p. 153] based on the mean of the

rectangular distribution. This has been described by Bartholomew as the oldest

known statistical test [see discussion in Cox (1955) 1. Epstein (1960) adapted this

test to the life testing problem and called it test 3. The test is based on the

total time on test up to the i-th order statistic (i =1, 2, ..., n), i.e.,
i
T(X.)= 2 (n-j+1) (X, -X,.)
| . J -1
j=1
n=-1 n
The test statistic is ¢ T(X.)/ X. . Under the exponential hypothesis

i=1 1

n-1

: oty - L) gy
) i 2 1 i

X. Vin - )12

=

— MDD
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is approximately N(0, 1) even for relatively small n . |If F <G , then it

follows from Theorem 3.12 (iii) 'Barlow and Proschan (1966) 1 that

n-1i n-1\
T T(X.) 7 T(Y.)
! ' ] !

Hence a natural test. mh" , rejects exponentiality in
n-1 T(X.)
favor of IFRA if ) — >c
| n - n
z &
1
‘n-l n '
where P YT(Y.)/ TY, >c V=0
G ' : i o= w‘

Empirical sampling by Zelen and Dannemiller [(1961), p. 477 indicates that this
test is superior to w”“ against Weibull distribution alternatives. Investigations
by Cox (1955) show that the analogue of this test for randomness in a sequence

of events is the most powerful test of the Poisson hypothesis against the alternative
of a time-dependent Poisson process with occurrence rate
o+t
(1) = B

See Bartholomew (1956) for further results concerning this test.

7. Concluding Remarks

It is perhaps worth noting that the percentage points in Table 2 and the results
of sectionS also apply to the Boswell test for trend in a stochastic process of
Poisson type. However, if the sample size is n and one is using the Boswell

statistic then one should locate percentage points in Table 2 corresponding to
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the number n + 1 . A proof for unbiasedness of the Boswell test can be made,
patterned after the techniques of section 4.

The number of possible likelihood ratio tests which may be constructed using
the definitions in section | is fairly large. Recall that the DFR (for decreasing
failure rate) maximum likelihood estimate is absolutely continuous when F(0) = 0
fMarshall and Proschan (1965) ). Hence one can construct a likelihood ratio test
for the following problems:

H: F a truncated exponential

(1) versus
H.: F DFR and then IFR (F(O) = 0)

H.: F IFR

versus
H . : F DFR and then IFR (F(0) = 0)

Note that the maximum likelihood estimates under both the hypothesis and the
alternative in each case will be absolutely continuous except at the largest
observation, Xn , if we impose the additional restriction F(0) =0 .

Clearly we can also construct a maximum likelihood test for

HO: F  truncated DFR

H]: F DFR and then I|FR.

(3) versus

There is no difficulty in constructing maximum likelihood tests for the problems:

H.: F exponential

(4) versus

Hy F DFR (F(0) = 0)
and

HO: F DFR (F(0) = 0)
(5) versus

H : F has decreasing density (F(0) = 0).
and F not DFR
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The maximum likelihood estimate assuming a decreasing density is given by Grenander
(1956). Recall that if F is DFR, then it has a decreasing density.
Likelihood ratio tests for the two sample problem will be considered in a

subsequent paper.
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